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A detailed analysis of correlations between structural features

and cation conductivity is performed for KAlO2 polymorphs

in a wide temperature range of 300–1023 K. To explore the

migration maps of K+ cations we have used neutron diffraction

data for low- and high-temperature KAlO2 polymorphs and

applied for the first time a novel algorithm based on the

natural tiling concept and implemented it into the program

package TOPOS. Five independent elementary channels for

the K+ cation migration have been revealed whose cross-

sections were found to be essentially different in the low-

temperature form, indicating a high anisotropy of the cation

conductivity. During the transition to the cubic high-

temperature phase all five channels become equivalent with

sharply increased cross-sections that account for the jump-like

increase of the cation conductivity and gives rise to its three-

dimensional character.
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1. Introduction

The last 30 years featured an intensive search for new alkali

ion-conducting solid electrolytes and, as a result, a large

number of compounds with high alkali cation conductivity

have been synthesized (Burmakin, 1992; West, 1995; Avdeev et

al., 2009). Besides widespread Li+ and Na+ conducting mate-

rials, close attention has been drawn to solid electrolytes with

mobile heavy alkali cations, in particular K+. One of the

promising classes of K+ cation conductors are solid solutions

based on potassium metaaluminate, KAlO2 (Burmakin, 1992;

Avdeev et al., 2009).

The first X-ray crystal structure data on potassium meta-

aluminate were published by Brownmiller (1935) who inter-

preted the crystal structure of KAlO2 as face-centered cubic

(f.c.c.) with a = 7.68 Å, space group Fd�33m. Then Barth (1935)

supposed that the room-temperature modification of KAlO2 is

similar to cristobalite. Later Burmakin et al. (1978) found that

KAlO2 undergoes a first-order phase transition at 810 K and

the f.c.c. cell determined by Brownmiller should be assigned to

the high-temperature form of KAlO2, while low-temperature

KAlO2 being stable below 810 K has a primitive cubic cell with

a doubled parameter a = 15.41 Å. Husheer et al. (1999) and

Sokolowski & Kotarba (2000) refined the low-temperature

form of KAlO2 as orthorhombic, space group Pbca, with a:b:c

’ 1:2:3; Vielhaber & Hoppe (1969) and Pistorius & de Vries

(1973) assigned it to the KGaO2 structure type. According to

Sokolowski & Kotarba (2000), KAlO2 becomes cubic above

773 K which slightly differs from the results of Burmakin et al.

(1978). De Kroon et al. (2001) reported the orthorhombic low-

temperature form KAlO2 with a = 4.280, b = 8.901, c = 5.466 Å

and tetragonal form between 873 and 1573 K, which trans-

forms into the cubic form at 1573 K. Finally, the neutron
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powder diffraction study of undoped KAlO2 (Burmakin et al.,

2004) and the solid solutions K1 � xAl1 � xTixO2 (Burmakin et

al., 2005) confirmed the data published by Husheer et al.

(1999) and Sokolowski & Kotarba (2000).

A similar cristobalite-like framework of AlO4 tetrahedra

were found in MAlO2 (M = Li, Na, Rb, Cs; Marezio, 1965;

Bertaut et al., 1965; Kaduk & Pei, 1995; Langlet, 1964),

however, these compounds are not isostructural to KAlO2.

Detailed structural data over the wide temperature region for

ferrites AFeO2 (A = K, Rb and Cs) which are isostructural to

KAlO2 are presented by Ali et al. (2010), Sheptyakov et al.

(2010) and Müller et al. (2010).

The three-dimensional framework in both KAlO2 poly-

morphs is composed of corner-shared AlO4 tetrahedra.

Experimentally determined Al—O distances in the room-

temperature modification (Voronin et al., 2010) are close to

the sum of the Al3+ and O2- radii (Shannon, 1976), therefore,

AlO4 tetrahedra are almost regular. There are rather large

voids of two types in the framework where two non-equivalent

K+ cations surrounded by eight O2� anions are located. The

average K—O distances in both coordination polyhedra

[hK1—Oi = 2.987 (3), hK2—Oi = 2.974 (2) Å] exceed the sum

of the K+ and O2� radii (2.91 Å). This fact along with the large

experimental value of the Debye–Waller factor for potassium

ions (W ’ 1.1 Å2) indicates that the K—O bonds are rather

weak, consistent with the enhanced mobility of the K+ cations.

In none of these papers were the relations between the

crystal structure features and the K+ cation conductivity

studied. This is true for studies of other types of cation solid

electrolytes: despite rich experimental diffraction data,

universal structural models of conductivity were not devel-

oped. Recently, Blatov et al. (2006), Anurova et al. (2008),

Anurova & Blatov (2009) developed a new method of

computer analysis of cation migration paths resting upon

standard crystallographic data and the Voronoi–Dirichlet

partition of the crystal space; this method was successfully

tested with a large number of Li-containing compounds. Using

the same approach, Voronin et al. (2010) analyzed the

migration paths of K+ cations in the crystal lattice of the

KAlO2 low-temperature form and showed an essential

anisotropy of the K+ cation conductivity.

In this paper we recheck the controversial data on the

KAlO2 polymorphism and consider in detail the relations

between the crystal structure features and

the conductivity of KAlO2 within the

temperature range 300–1023 K. For this

purpose, we have used high-resolution

neutron diffraction data and an improved

method of the conductivity analysis that

was implemented into the program

package TOPOS (Blatov, 2006). TOPOS

and the related manuals are available for

free at http://www.topos.samsu.ru/.

2. Experimental

The methods of synthesis and sample preparation have been

described elsewhere (Burmakin et al., 1979, 2004). Neutron

diffraction experiments were carried out using the high-reso-

lution powder neutron diffractometer HRPT (SINQ Spalla-

tion source of Paul Scherrer Institute, Villigen, Switzerland;

Fischer et al., 2000). A KAlO2 sample was placed in an evac-

uated vanadium container and heated up to a high tempera-

ture to remove moisture and then cooled down to room

temperature at persistent evacuation. Structural parameters

were refined by the Rietveld technique using the FULLPROF

program (Rodriguez-Carvajal, 1993). When analyzing the

integral intensity of peaks the radiation background was

approximated by a 18-term polynomial. The neutron diffrac-

tion profile was described with the pseudo-Voigt function. The

crystallographic data are given in Table 1.

Our results confirmed recently published data (Voronin et

al., 2010) for KAlO2 at room temperature [Pbca, a =

5.4389 (1), b = 10.9235 (2), c = 15.4563 (2) Å]. Between room

temperature and 810 K the neutron diffraction patterns are

similar and may be interpreted within the model of the low-

temperature phase. Above 810 K some reflections disappear,

indicating the transition to a higher-symmetry structure. The

neutron diffraction data for the high-temperature form of

KAlO2 can be indexed in a cubic cell (the Fd�33m space group)

that reflects a first-order transition from the orthorhombic

low-temperature form to the cubic high-temperature form.

The cubic phase does not undergo any transition at the

subsequent temperature increase up to 1023 K. Thus,

according to our data, at ordinary pressure KAlO2 only has

two phases which will be further referred to as low-tempera-

ture (orthorhombic) and high-temperature (cubic).

To determine migration maps (i.e. sets of migration paths of

mobile cations within the framework) from crystallographic

data, we used the program package TOPOS modified by

Blatov et al. (2006) for studying fast-ion conductors. An

important difference compared with our previous study of the

room-temperature KAlO2 phase (Voronin et al., 2010) was

that we used a novel algorithm based on the natural tiling

concept (Anurova & Blatov, 2009) that is most applicable for

compounds with rather simple framework topology. As

opposed to the Voronoi–Dirichlet approach (Voronin et al.,
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Table 1
Crystallographic data for KAlO2 phases at different temperatures.

T (K)
Space group,
Z Cell parameters (Å), V (Å3) �max, Rint R, wR, Nref, Npar

300 Pbca, 8 5.4387 (2), 10.9236 (3), 15.4564 (4), 918.26 (5) 164.6, 0.025 0.013, 0.017, 566, 68
400 Pbca, 8 5.4457 (3), 10.9401 (7), 15.4698 (9), 921.6 (1) 164.8, 0.032 0.044, 0.057, 569, 70
500 Pbca, 8 5.4560 (4), 10.9617 (8), 15.489 (1), 926.4 (1) 164.8, 0.039 0.047, 0.061, 573, 70
600 Pbca, 8 5.4668 (4), 10.9862 (9), 15.510 (1), 931.5 (1) 164.8, 0.044 0.045, 0.058, 574, 70
700 Pbca, 8 5.4788 (5), 11.012 (1), 15.536 (2), 937.4 (2) 164.8, 0.059 0.047, 0.059, 577, 70
773 Pbca, 8 5.4888 (2), 11.0346 (4), 15.5598 (5), 942.40 (6) 164.8, 0.060 0.030, 0.038, 579, 66
833 Fd�33m, 4 7.8033 (6), 475.16 (7) 164.8, 0.115 0.060, 0.078, 24, 26
923 Fd�33m, 4 7.8179 (5), 477.83 (5) 164.8, 0.032 0.046, 0.061, 24, 32
1023 Fd�33m, 4 7.8329 (3), 480.58 (4) 164.8, 0.043 0.026, 0.035, 24, 32



2010), the natural tiling algorithm provides simpler and easier

interpretable migration maps. It is also much more stable to

the geometrical distortions of the framework and results in

topologically similar migration maps if the framework

topology is retained after distortion. Nonetheless, this algo-

rithm was not applied to compare in detail its results with

experimental data on ionic conductivity.

Let us recall that the natural tiling of a net is an unambig-

uous method to subdivide an infinite framework into finite

three-dimensional objects (natural tiles) that are confined by

strong rings (cycles of atoms that are not sums of smaller

cycles) and can be considered as generalized polyhedra, i.e.

the polyhedra that can have curved faces and two-coordinated

vertices (Fig. 1).

The framework simplicity can be assessed with the tiling

transitivity parameter pqrs, where the integers p, q, r and s

denote the number of non-equivalent atoms, bonds, rings and

tiles in the framework: the smaller the transitivity the simpler

the framework topology. Indeed, the [AlO2]� framework has

one of the simplest and highly symmetric topologies of cris-

tobalite or diamond if one considers only Al atoms; the

diamond-like framework of the highest Fd�33m symmetry has

the smallest possible transitivity 1111 (Blatov et al., 2007), i.e.

there is only one kind of atom, bond, ring and tile in the

framework. Blatov et al. (2007) showed that natural tiles and

their faces (strong rings) correspond to minimal cages and

windows of the framework, respectively. The net whose edges

connect the centers of the natural tiles and pass through the

tile faces is called dual net; it is the net that contains the

migration map for fast-ion conductors (Anurova & Blatov,

2009). There is a one-to-one relation between topological

elements of the framework and its dual net; in particular,

nodes and edges of the dual net correspond to cages and

windows of the framework. The diamond net is self-dual; this

means that the dual net has also the diamond topology (Fig. 2).

Every edge of the dual net corresponds to an elementary

channel, i.e. to a part of the migration channels passing

through a particular window (Fig. 2). In general, the migration

map is a subnet of the dual net since some windows and cages

are not accessible for mobile cations. The corresponding

elementary channels will be insignificant; they should be

removed resulting in the migration map that is thereby a

subnet of the dual net. It is important that the number of

elementary channels is always finite – it is equal to the number

of non-equivalent edges of the dual net. Thus, the analysis of

an infinite migration map that in general contains an infinite

number of migration paths is substituted for the analysis of

elementary channels.

Ordinarily, the natural tiling approach results in a simpler

migration map than the method based on the Voronoi–

Dirichlet partition (Anurova et al., 2008; Voronin et al., 2010).

The point is that every framework window or cage corre-

sponds to strictly one edge or node of the dual net while the

Voronoi–Dirichlet graph often provides conglomerates of

edges and vertices especially for distorted frameworks

(Anurova & Blatov, 2009). This feature of the natural tiling

approach is especially useful for a comparative analysis of

migration maps in structurally similar frameworks that were

crucial for our investigation.
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Figure 1
(a) Natural tiles and (b) tiling of a diamond net.

Figure 2
Diamond net (grey balls) and the corresponding dual net (black lines). A
natural tile (yellow balls) confined by four 6-rings is selected in the
diamond net, and the center of the corresponding cage together with four
channels passing through the four windows are red. One 6-ring is shaded.



To determine the significant elementary channels, i.e. the

windows through which the mobile cations can pass, one

should apply geometrical criteria (Anurova et al., 2008;

Anurova & Blatov, 2009) taking into account the size of the

cations and their polarizability. For potassium cations

migrating through oxygen-bound windows the minimal radius

of the window, i.e. the distance from the window center to the

centers of the oxygen atoms, can be calculated as rmin =

(rK + rO)�KO, where rK and rO are potassium and oxygen ionic

radii, and �KO is the deformation factor, which reflects the

polarizability of the K—O pair during migration. All

elementary channels of radius smaller than rmin should be

assumed insignificant. Voronin et al. (2010) estimated rmin as

(1.33 + 1.36) � 0.85 ’ 2.30 Å, where rK = 1.33 Å, rO = 1.36 Å,

�KO = 0.85; this rmin value is used in this paper.

3. Discussion

3.1. Relations between crystal structures of the KAlO2

polymorphs

Ali et al. (2010) and Sheptyakov et al. (2010) showed that

the phase transitions in the AFeO2 (A = K, Rb, Cs)

compounds whose crystal structures are similar to that of

KAlO2 consist of rotating tetrahedra as a whole and ordering

them along a body diagonal of the unit cell. In this work we

propose another approach to the description of the tempera-

ture changes in the KAlO2 crystal structure that yields a

deeper insight into the phase transition mechanism. The

orthorhombic KAlO2 phase can be described with a triclinic

quasi-cubic subcell with dimensions close to those of the high-

temperature cubic form (see the supplementary material1);

moreover, the positions of the atoms in the subcell are close to

those in the f.c.c. lattice (Fig. 3). The AlO4 tetrahedra are

located in the vertices and centers of faces, while K+ ions are

close to the subcell edges (/Al—K—Al ’ 177�). This

framework model is similar to the cubic structure of cristo-

balite. The temperature dependence of the triclinic cell

parameters shows a strong anisotropy which disappears at the

othorhombic! cubic transition (Fig. 4). At this point (810 K),

the conductivity increases � 2.5 times and reaches

10�3 S cm�1, the activation energy decreases from 42 to

32.5 kJ mol�1 (Burmakin et al., 2004), while the unit-cell

volume dependence is monotonous (Table 1, Fig. 5). So we

have no reason to attribute the jump-like increase of the

conductivity to the lattice thermal extension. At the same

time, the Debye–Waller factors for Al and K atoms signifi-

cantly increase at the phase transition point (Fig. 6). On the

other hand, the neutron diffraction patterns contain sharp

peaks of the cubic phase after the othorhombic ! cubic
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Figure 3
Position of the triclinic quasi-cubic subcell (a0, b0, c0) in relation to the
orthorhombic cell (a, b, c).

Figure 4
Temperature dependence of (a) linear and (b) angular parameters of the
triclinic sublattice of KAlO2.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: KD5061). Services for accessing these data are described
at the back of the journal.



transition, but broad diffuse maxima appear instead of the

isotropic background (Fig. 7) that is typical for amorphous and

liquid materials. For K+ cations the thermal factor value is

� 5.0 Å2 after the transition that corresponds to the oscilla-

tion amplitude of � 0.5 Å or � 15% of the K—K distance

(� 3.4 Å). According to Lindemann0s criterion (Lindemann,

1910; Hansen & Verlet, 1969), such an increase of the vibra-

tional amplitudes is comparable with that at the melting point.

This gives evidence of the essential disordering of the K+

cations.

3.2. Relations between the KAlO2 crystal structure features
and K+ conductivity

The TOPOS analysis of dual nets reveals five non-equiva-

lent elementary channels (I)–(V) in the K+ migration map of

the low-temperature phase. These channels correspond to five

non-equivalent framework windows and differ in size (Table

2) and form (Fig. 8). They also play different roles in the

migration map (Fig. 9): windows (V) form channels [100] that

provide the conductivity at low temperatures (Vielhaber &
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Figure 6
Temperature dependences of the Debye–Waller factors for Al and K
atoms in KAlO2.

Figure 7
Fitted powder neutron diffraction profile for KAlO2 at 1073 K with
observed (dots), calculated (solid line) and difference plots. Dashes
designate the angular positions of the reflections.

Figure 8
Non-equivalent windows in low-temperature KAlO2 (I)–(V) and (bottom
right) the window in high-temperature KAlO2. The arrows show the
methods of computing radii: for windows (I)–(III) the radius is equal to
the half distance between the closest opposite O atoms; for windows (IV)
and (V) it is estimated as the radius of the sphere inscribed into the
window.

Figure 5
Temperature dependence of the unit-cell volume for the orthorhombic
and cubic KAlO2 phases. For the cubic phase the volume is doubled to fit
the number (8) of formula units for the orthorhombic phase.



Hoppe, 1969; Fig. 9 top); windows (I) and (II) connect the

channels into a layer (010) system, which is extended to a

three-dimensional net through windows (III) and (IV) (Fig. 9

bottom). The sizes of the windows were estimated depending

on their form: for windows (I)–(III) there are two O atoms

close to the center of the window, while for windows (IV) and

(V) there are three such atoms (Fig. 8). Assuming rmin =

2.30 Å (Voronin et al., 2010), the low-temperature KAlO2

conductivity is expected to be anisotropic, since only

elementary channels (I), (II) and (V) remain significant. The

elementary channels (III) and (IV) correspond to narrower

windows that are less accessible for mobile potassium cations.

This result in general confirms the conclusions drawn with the

Voronoi–Dirichlet method (Voronin et al., 2010), where the

conductivity was predicted to be anisotropic and channels [100] were considered as the most probable paths of cation

migration. At the same time, the tiling method gives a two-

dimensional migration pattern, while the Voronoi–Dirichlet

method predicts a one-dimensional system of accessible

channels. Taking into account the aforesaid advantages of the

tiling method, the two-dimensional migration pattern seems

more reasonable.

As the temperature increases, the sizes of the windows

become closer and during the orthorhombic–cubic phase

transition increase dramatically to become identical after the

transition (Fig. 10). It is important to take into account the

quite monotonic increase of the unit-cell volume (Fig. 5). Such

a cardinal difference in the temperature dependences of the

cell volume and of the migration channel size during the phase

transition is caused by a change of orientation of the AlO4

tetrahedra. Fig. 11(a) shows that in the low-temperature form

the tetrahedra are disoriented to each other and to the axes of

the unit cell, so both the dimensions and the form of the

migration channels are quite different. During the phase

transition the tetrahedra rotate and become strongly ordered

(Fig. 11b). This process gives rise to the drastic increase and

equalization of the dimensions of the channels.

This dramatic reconstruction of the framework windows

results in a high three-dimensional conductivity in the cubic

phase. The topology of the framework is preserved in the

cubic phase, however, thanks to a higher symmetry the tiling
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Figure 10
Temperature dependence of radii (r) of windows (I)–(V) in the
orthorhombic and cubic KAlO2 phases.

Table 2
Radii of framework windows (I)–(V) (Å) in orthorhombic and cubic
KAlO2 phases at different temperatures.

E.s.d.’s for the windows sizes do not exceed 0.008 Å.

Temperature (K) (I) (II) (III) (IV) (V)

300 2.392 2.505 2.180 2.241 2.412
400 2.417 2.505 2.201 2.251 2.417
500 2.436 2.496 2.217 2.266 2.447
600 2.451 2.508 2.256 2.291 2.467
700 2.489 2.512 2.295 2.308 2.483
773 2.532 2.512 2.347 2.350 2.522
833 2.758
923 2.764
1023 2.769

Figure 9
The orthorhombic KAlO2 phase at 300 K. (a) The channels [100] passing
through windows (V); (b) the layer channel systems (010) with
participation of windows (I) and (II) as well as additional narrow
channels (dashed lines) passing through windows (III) and (IV).



transitivity decreases to 1111 compared with 2452 for the

orthorhombic phase. Hence, the cubic phase has only one

independent elementary channel in the migration map with a

radius increasing from 2.758 to 2.769 Å at high temperature

(Fig. 10). The channel sections are round compared with

corrugated channels in the orthorhombic phase (Fig. 8); all O

atoms bordering the channel are equidistant from its central

line. The single non-equivalent window corresponds to the 6-

ring of the diamond net (Fig. 2). Since the radius estimated as

the distance from the channel central line to the centers of O

atoms exceeds a typical K—O distance (rK + rO = 1.33 + 1.36 =

2.69 Å), potassium cations can move smoothly through the

framework windows that give rise to the experimental high

conductivity of cubic KAlO2. In this case the migration map

coincides with the dual net, i.e. all the elementary channels are

significant.

4. Conclusion

Our analysis shows that the low-temperature orthorhombic

KAlO2 is a typical solid electrolyte with intrinsic thermal-

activated defects in the whole range of existence. The

conductivity is highly anisotropic as two of five types of

elementary migration channels are of small size and remain

inaccessible to the K+ cations. The structural phase transition

to the f.c.c. form is followed by a decrease in the conductivity

activation energy, which indicates increased mobility of the

current carriers. The main reasons for this increase are

enlargement and equalization of the elementary channels. As

a result, the K+ cations can move along all the channels with

minimal hindrances that should give rise to a decrease of the

conductivity anisotropy. The results obtained give evidence of

the efficiency of the natural tiling approach for analyzing the

conducting properties of anionic frameworks. In accordance

with this approach, an infinite migration map is divided into

elementary channels following a strict algorithm (Blatov et al.,

2007); the number of independent elementary channels is

always finite and, as a rule, does not exceed 10–20, simplifying

the migration pattern analysis. The tiling approach reveals

advantages in comparison with the Voronoi–Dirichlet method

(Anurova et al., 2008; Voronin et al., 2010) as we were able to

study in detail the temperature dependence of migration maps

and their transformations during the othorhombic ! cubic

phase transition.

Despite the favourable structural changes at the ortho-

rhombic ! cubic transition, the conductivity of high-

temperature KAlO2 is not very large (� 10�3 S cm�1). The

reason could be in a small number of vacant positions in the

potassium sublattice. This is confirmed by a sharp increase of

the conductivity in the KAlO2 samples where the Al3+ cations

are partially substituted for four-charged cations (Burmakin et

al., 1979; Burmakin, 1992).

This work is supported by Russian Foundation for Basic

Research (grant No. 03-11-00663) and Program No.

16.518.11.7032 of Russian Ministry of Education and Science.
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Figure 11
Spatial orientation of AlO4 tetrahedra in (a) the low-temperature and (b)
the high-temperature phase of KAlO2.
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